Code Review Practices for Smart Contract on the
Ethereum Platform

Aryan Haddady Shaquille Pearson
ahaddady@uwaterloo.ca s23pears@uwaterloo.ca

Sky Qiao
s4qiao@uwaterloo.ca

March 13, 2024

1 Introduction

In the rapid process of developing a software project, especially when numerous teams
and developers collaborate, having an effective version control system is extremely im-
portant. One of the most popular such systems is Git, the version control system intro-
duced by Linus Torvalds in 2005.

1.1 Code Review in Software Development

When developers make modifications or enhancements to a software’s source code, their
primary objective is to merge these changes seamlessly into the central repository of the
project. Git, as a version control system, provides constructs such as branches and forks,
facilitating this integration process. Every modification in the source code can be visu-
alized as a distinct node within a tree data structure, representing the post-modification
state of the code. Upon the completion of these changes, developers propose their up-
dates for potential integration into the primary codebase. Platforms such as GitHub term
this proposal as a "Pull Request”. In contrast, platforms like GitLab use the name "Merge
Request” for a similar process.

1.2 Blockchain Technology and Smart Contracts

Blockchain technology, particularly platforms like Ethereum, has gained considerable at-
tention and adoption in recent times. This technology allows developers to deploy spe-
cialized programs known as Smart Contracts. These contracts explicitly define the terms
and conditions of transactions that take place within the network between different par-
ties. The predominant programming language used for designing these smart contracts is
Solidity.

1.3 Objectives of this Paper

It is essential to note that Smart Contracts, though a specialized niche within the expan-
sive spectrum of software development, are not immune to the practices and principles of
traditional software development. The concepts that govern conventional software, in-
cluding version control and code review, are equally applicable and crucial in the domain
of Smart Contracts.

The primary focus of this research is to see how these pull requests are reviewed by the
ones in charge of reviewing pull requests to see whether any new bugs or security issues
were introduced by merged pull requests, and how big and important these projects have
been.

We try to investigate the accuracy of these reviews, evaluate if any new vulnerabili-
ties or potential bugs have been introduced through the merged requests, and assess the
overall importance and popularity of the projects in question. Furthermore, we aspire to
recommend potential strategies and best practices to enhance the code review processes
within the paradigm of Smart Contract development.

2 Motivation

Code review is an integral part of software development, offering several benefits such
as error detection and quality assurance. In traditional software projects, code review
processes have been crucial in maintaining code quality. However, the domain of smart
contracts on blockchain platforms presents unique challenges. According to the paper
"Code Cloning in Smart Contracts on the Ethereum Platform: An Extended Replication
Study” [1], many smart contracts deployed on the chain contain numerous bugs. This
paper aims to investigate whether an efficient code review process can significantly reduce
these bugs. To begin, it is essential to understand the differences in code review practices
between traditional projects and smart contract projects.

2.1 CodeReview: Traditional Projects vs. Smart Contract Projects

Distinct challenges arise in smart contract development compared to traditional software
projects:

« Emerging Technologies:

— Smart Contract: Solidity, as a primary language for smart contract develop-
ment, is a relatively new language compared to established languages. This
relative newness can lead to inadvertent errors as developers are not as fa-
miliar with it as other well-known programming languages like Python or
Javascript.

- Traditional Projects: Languages like JavaScript and Python have robust ecosys-
tems, well-established practices, and a vast community, making error detec-
tion and resolution faster.

« Unique Paradigm:

— Smart Contract: Smart contract development introduces a novel paradigm,
divergent from traditional paradigms like back-end development.

- Traditional Projects: Paradigms like back-end development are based on well-
understood patterns and practices, reducing emerging challenges.

« Tooling Deficit:

— Smart Contract: The emerging nature of the smart contract domain implies a
lack of mature development and debugging tools.

- Traditional Projects: Mature Integrated Development Environments (IDEs),
debuggers, and testing frameworks exist, simplifying the development and
testing process.

Given the aforementioned difficulties, flawed code review processes can lead to sig-
nificant damage to a software project.

2.2 Consequences of Flawed Code Review: Traditional Projects vs.
Smart Contracts

Problematic smart contracts can cause more severe problems compared to many tradi-
tional software systems because of:

+ Monetary Stakes:

— Smart Contract: Facilitates financial transactions. Imperfections can lead to
massive financial losses. Even minor financial losses will make this new paradigm
look terrible to potential customers.

- Traditional Projects: Depending on its use case, might not always have imme-
diate financial implications.

« Trustworthiness:

- Smart Contract: Earning trust is vital for the blockchain ecosystem. Frequent
security breaches can significantly damage this trust. Especially as the paradigm
is relatively new and needs to appeal to new customers out there.

- Traditional Projects: While trust is important, the impact of a breach might be
localized depending on the application. People are already familiar with the
applications of such projects as websites, etc., and issues will only hurt that
specific faulty project rather than the whole paradigm.

Problem Statement

Will the proper code review process effectively reduce the number of common errors in
smart contracts?

3 Methodology

First, we need to have some projects to inspect their pull requests. We partitioned the
projects into three categories with the following samples:

1. Famous Smart Contract Projects

Uniswap [2]. Uniswap, operating on Ethereum, is a decentralized exchange
protocol employing automated market maker (AMM) principles for direct
cryptocurrency trading from Ethereum wallets, eliminating traditional inter-
mediaries. It uses liquidity pools to enable token exchange, with users con-
tributing tokens and earning fees. Its innovative constant product formula
maintains token ratios as traders participate, adjusting prices based on sup-
ply and demand.

Aave [3]. AAVE, an Ethereum-based DeFi protocol, offers decentralized lend-
ing and borrowing. Users can lend or borrow assets using collateral, bypass-
ing traditional banks. Liquidity pools facilitate these activities, with lenders
earning interest and borrowers accessing funds. AAVE’s standout feature is
“flash loans,” enabling collateral-free short-term borrowing.

Compound [4]. Compound is a decentralized lending protocol built on the
Ethereum blockchain, operating within the realm of decentralized finance
(DeFi). Its primary function is to enable users to lend their cryptocurrency
assets and earn interest, as well as borrow assets by collateralizing their hold-
ings, all without the need for intermediaries like traditional banks.

Dai Stablecoin System(DSS) [5].DAI is an Ethereum-based decentralized sta-
blecoin in the DeFi realm, aiming to provide users with a stable cryptocur-
rency tied to a specific fiat currency, typically the US Dollar. It maintains
stability through over-collateralization, where users lock up crypto assets to
receive DAI tokens. These tokens adjust collateral levels automatically, en-
suring stability even during market fluctuations.

Chainlink [6]. Chainlink is a decentralized oracle network that bridges the
gap between blockchain smart contracts and real-world data in the decen-
tralized finance (DeFi) ecosystem. It utilizes "oracles” to fetch and deliver
data from external sources to smart contracts, ensuring informed decision-
making based on accurate data. This decentralized network of nodes employs
cryptographic techniques and incentives to ensure data integrity.

2. Middle Ground Smart Contract Projects

Balancer [7]. Balancer is a decentralized finance (DeFi) protocol focused on
automated portfolio management. Its core innovation is the ability to cre-
ate and manage liquidity pools with multiple tokens, effectively serving as an
automatic portfolio manager, liquidity provider, and price sensor. Balancer’s
uniqueness is its flexibility in allowing pools to contain multiple tokens with
any given weight, thereby broadening the range of financial actions that can
be automated on its platform.

KyberSwap [8]. KyberSwap is a decentralized exchange protocol offering seam-
less token swaps. A distinctive feature is the KyberAl tool, which provides
market analysis to assist users in making informed trading decisions. Kyber-
Swap’s uniqueness is its on-chain liquidity protocol that aggregates liquidity
from diverse sources, providing the best rates and ensuring a smooth trading
experience.

Sushiswap [9]. SushiSwap is a decentralized cryptocurrency exchange known

for its innovative approach to liquidity provisioning and yield farming. SushiSwap’s
uniqueness is its offering of cross-network asset transfers, ensuring users get
optimal rates across various blockchain networks.

Synthetix [10]. Synthetix is a decentralized finance (DeFi) protocol that fa-
cilitates the issuance and trading of synthetic assets. These assets mirror the
price of real-world assets, such as crypto, forex, and commodities. Synthetix’s
uniqueness is its ability to offer high-leverage trading, a feature uncommon
in many other DeFi platforms.

« Yearn Vaults [11]. Yearn Finance is a decentralized protocol that streamlines
yield farming by automatically allocating user deposits to the most profitable
DeFi lending protocols. Yearn Finance’s uniqueness is its community-driven
approach, with strategies being proposed, debated, and implemented by the
Yearn community.

3. Lesser-Known Smart Contract Projects

« DODOEX [12]. Dodo is a project that tries to address the low fund utiliza-
tion and instability of liquidity providers’ portfolio issues by proposing a new
algorithm called Proactive Market Maker (PMM) whose primary objective is
to minimize risks for fund providers and stabilize their portfolio.

« Opium [13]. Opium is a protocol for creating, settling, and trading any de-
centralized derivative.

« KEEP [14]. Keep network is a privacy, interoperability, and censorship-resistance
toolkit for developers on Ethereum.

- UMA [15]. UMA is an optimistic oracle and dispute arbitration system that
securely allows for arbitrary types of data to be brought on-chain. UMA’s
oracle system provides data for projects including a cross-chain bridge, in-
surance protocols, custom derivatives, and prediction markets.

« Hegic [16]. Hegic is an on-chain options trading protocol on Ethereum. Op-
tions are financial derivatives that give buyers the right, but not the obligation,
to buy or sell an underlying asset at an agreed-upon price and date.

Second, we will use Slither, a state-of-the-art Solidity source analyzer [17]. Through
its detectors, Slither can find vulnerabilities, inefliciencies, and other potential issues within
smart contracts. Significantly, Slither can detect reentrancy, improper visibility configu-
rations, and other prevalent issues, making it a critical component of our analysis. By us-
ing Slither on the pull requests for the mentioned smart contract projects, we can measure
the amount of flagged issues. This provides insight into the existing code review process’s

challenges. With this data, we'll do the statistical analysis and visual representations to

discuss the results in depth.

Third, based on our analysis and the data we get, we will discuss the usefulness of
the current code review process of the smart contracts, the frequency of the common
errors that appear in the smart contract, the severity of these recurrent mistakes, and the
potential implications they may have.

Fourth, we will propose an improved code review methodology specifically designed

to preempt and address the common errors observed in smart contracts.

4 Results

4.1 Initial Investigation

After we collected the data, we noticed some interesting numbers from the data:

GitHub Repo PR PR PR Avg. Avg. Avg. Avg.
Open | Closed | Merged| Re- Com- | Time Time
view- | ments | to to
ers Merge | Close
(hrs) (hrs)
Uniswap/v3-core 6 105 214 1 1 181 334
aave/aave-protocol 9 50 418 1 0 66 363
compound- 22 84 50 0 1 670 1304
finance/compound-protocol
makerdao/dss 12 65 154 1 0 152 831
smartcontractkit/chainlink 108 1990 7370 1 2 77 446
yearn/yearn-vault 4 111 291 1.11 1.21 112.32 | 588.8
sushiswap/sushiswap 14 139 697 0.13 2.27 69.05 1132.81
Synthetixio/synthetix 5 378 1613 1.2 0.83 109.98 | 968.59
balancer/balancer-v2- 11 204 1880 1.27 0.56 83.7 833.1
monorepo
KyberNetwork/smart- 21 216 728 1.04 0.27 91.72 310.91
contracts
DODOEX/dodo-smart- 1 0 4 0.4 0 8.84 None
contract
hegic/contracts-v1/ 7 1 3 0.09 0.09 24.6 4393.23
keep-network/keep-core 55 347 2368 1.52 1.5 184.65 | 1180.38
opiumprotocol/opium- 38 18 3 0.07 0.29 0.36 4162.06
contracts
UMAprotocol/protocol 9 262 3366 1.89 0.8 56.57 262.07

Table 1: GitHub Repositories and their PR statistics

We can see from the table that:

« High visibility projects often witnessed continuous upgrades, improvements, and
bug fixes. This could potentially lead to longer pull request processing times due to
the high volume.

« Popular projects benefited from extensive testing, but the high number of pull re-
quests presented a challenge, potentially slowing down their resolution.

+ Middle-ground projects typically had a balance of visibility and security. They of-
ten enjoyed faster pull request resolution times due to a manageable volume of re-
quests.

« Lesser-known projects showcased the benefits of innovation and uniqueness, with
a potential for faster issue resolutions. However, the risk of security vulnerabilities
was also higher in some cases due to less rigorous testing.

« The vibrancy of the developer community and the ecosystem was found to signif-
icantly impact the pull request management process. Projects with a more active
community tended to be more efficient in addressing pull requests.

« Security concerns varied across projects. High visibility often led to quicker iden-
tification and patching of vulnerabilities, while lesser-known projects ran the risk
of undetected security threats.

It’s worth noting that some projects with low pull request numbers actually have mul-
tiple sub-projects or are rapidly updating. For instance, some have already progressed to
version 3, and with each new version, a new repository is created. This spreads out the
pull requests and can result in lower numbers appearing on the graph.

4.2 Tool Analysis

One thing that we can investigate is whether Slither is able to find issues after the pull
request was merged, because this way, we will know that although the changes were re-
viewed, they still introduced new issues in the smart contracts. Here are a few examples
that were observed in the aforementioned Github repositories.

4.2.1 Well Known Projects

« Compound Finance: We analyzed the 51 merged pull requests (PRs) for the Com-
pound protocol. These PRs represent collaborative efforts by developers to en-
hance the functionality, security, and performance of the Compound protocol’s
smart contracts. As these changes are integrated into the codebase upon approval,
it's imperative to ensure that they adhere to best practices and do not introduce any
vulnerabilities or inefliciencies.

To facilitate this analysis, Slither is employed. Slither is designed to automatically
identify potential issues in Solidity smart contracts. It achieves this by employing
a set of predefined "checks” that inspect various aspects of the code. These checks

Count of Checks by Impact (Slither Static Analyzer)

8
6
4
2 [
0

High Informational Low Medium Optimization

Numer of Unique Checks

Impact Level

Figure 1: Slither Analysis Results

range from detecting common vulnerabilities like reentrancy attacks and uninitial-
ized variables to identifying coding patterns that could lead to suboptimal perfor-
mance or security risks.

"Impact” and "confidence” are terms used in Slither for smart contracts. “Impact”
indicates the severity of a vulnerability, with levels like High, Medium, and Low,
reflecting potential consequences. Confidence” shows the reliability of the detec-
tion, ranging from High (strong evidence) to Low (requires validation). Both fac-
tors guide prioritization and resource allocation for fixing vulnerabilities in smart
contracts.

Of the 51 pull requests analyzed with Slither, we found 6 unique cases of high-
impact vulnerabilities in figure 1 with at least a medium confidence level, these
results are as follows:

- Arbitrary-send-erc20: This vulnerability is of high impact because it in-
volves arbitrary sending of ERC-20 tokens. When arbitrary tokens are sent
using the transfer function, it can lead to various security risks. For instance,
if the contract lacks proper authorization or checks, an attacker could send
tokens that they’re not supposed to control, leading to a loss of user funds or
destabilizing the token economy.

- Controlled-delegatecall: The use of delegatecall is a powerful but danger-
ous feature in Ethereum smart contracts. If not controlled carefully, it can in-
troduce significant vulnerabilities. A high impact is assigned because misuse
of delegatecall can allow an attacker to execute arbitrary code from another
contract, effectively compromising the security of the entire system.

- Controlled-array-length: Accessing arrays without proper bounds check-
ing can result in out-of-bounds errors, leading to unexpected behavior or
crashes. Since these issues can have severe implications, especially when ex-
ploited by attackers, this vulnerability is given a high impact.

- Uninitialized-state: Uninitialized state variables can lead to unpredictable

4.2.2

behavior and potentially enable attackers to exploit unintended functionality
or manipulate contract behavior. The high impact is due to the potential for
data leakage, loss of funds, or overall disruption of the contract’s functional-
ity.

- Arbitrary-send-eth: Similar to arbitrary sending of ERC-20 tokens, send-
ing arbitrary Ether without proper checks or authorization can lead to loss
of funds or unexpected behavior. This vulnerability is assigned a high impact
due to its potential financial and operational consequences.

- Unchecked-transfer: The unchecked use of the transfer function can lead
to contract funds getting stuck if the transfer fails, which might happen for
various reasons such as out-of-gas errors. Since this could potentially lead to
loss of funds and contract dysfunction, it is classified as having a high impact.

The vulnerability analysis of the Compound protocol’s smart contracts highlighted
several high-impact vulnerabilities that could pose significant risks to the proto-
col’s security and functionality. Notably, vulnerabilities like "Arbitrary-send-erc20”
(48 instances), "Unchecked-transfer” (228 instances), "Controlled-delegatecall” (409
instances), "Controlled-array-length” (429 instances), and "Uninitialized-state” (212
instances) were identified. These counts emphasize the widespread presence of
these vulnerabilities, underscoring the urgency for targeted remediation efforts to
enhance the protocol’s security posture and mitigate potential risks. Addressing
vulnerabilities with high counts is crucial for minimizing attack vectors and en-
suring the robustness of the Compound protocol.

Middle Ground Projects

Kyber Network: Within the repository of KyberNetwork/smart-contracts, there
were a significant 1880 merged pull requests. The average time taken to merge
a pull request amounted to 84 hours. Though this may appear fast, it could have
been a clue to the rushed review process. One notable pull request added support
for "KyberFprReserveV2 supporting WETH as quote”. This introduced a new file
named KyberEprReserveV2.sol, which unfortunately caused the problem of miss-
ing zero-address validation check. Missing this validation could result in the per-
manent loss of money if they are sent to the zero address. Slither showed this prob-
lem with the log:

Withdrawable3.withdrawEther (uint256,address) .sendTo
(utils/Withdrawable3.sol#29) lacks a zero-check on :
- (success) = sendTo.call{value: amount}()

This pull request also has the problem of reentrancy vulnerability. Slither produced
the following log for this problem:

Reentrancy in KyberFprReserveV2.doTrade

(IERC20,uint256,IERC20,address,uint256,bool)
(reserves/KyberFprReserveV2.s01#310-390) :
External calls:
- conversionRatesContract.recordImbalance
(destToken,int256 (destAmount) ,0,block.number)
(reserves/KyberFprReserveV2.sol#351-356)

External calls sending eth:

- weth.deposit{value: msg.value}() (reserves/KyberFprReserveV2.so0l#359)

- (success) = destAddress.call{value: destAmount}()
(reserves/KyberFprReserveV2.sol#385)

Event emitted after the call(s):

- TradeExecute(msg.sender,srcToken,srcAmount,destToken,destAmount,destAddress)
(reserves/KyberFprReserveV2.s0l#389)

« Yearn Vaults: Within the yearn/yearn-vaults repository, the PR titled "chore: re-
lease 0.4.5 (546)” introduced a new file named BaseFeeOracle.sol. However, Slither
identified several problems within this file.

One of the problems detected by Slither is the missing zero-address validation
check in the methods 'setPendingGovernance’ and 'setBaseFeeProvider’. This prob-
lem was detected by Slither by the following log:

BaseFee(Oracle.setPendingGovernance (address) . _governance
(BaseFeeOracle.sol#93) lacks a zero-check on :

- pendingGovernance = _governance (BaseFeeOracle.sol#95)
BaseFeelOracle.setBaseFeeProvider (address) . _baseFeeProvider
(BaseFeelOracle.sol#114) lacks a zero-check on :

- baseFeeProvider = _baseFeeProvider (BaseFeeOracle.sol#116)

Note that this repository has a long average merge time of 112 hours and it only
has a small number of merged PRs (291 PRs). So with both a low number of PR
merged and a long merge time, it suggests the code review process is being treated
carefully. As a result, the number of detected issues appears proportionally fewer
compared to other smart contract repositories.

- Synthetix: In the repository Synthetixio/synthetix, in the commit of id "d0070a7”,
it introduce a new file Migration_EnifOptimismStep 1.sol. One of the problems
detected by Slither was related to setting array length with a user-controlled value,
which is a quite dangerous action. Slither provided this information through the
following log:

ExchangeRates contract sets array length
with a user-controlled value:
- aggregatorKeys.push(currencyKey)

10

Furthermore, another detected problem was the use of multiplication after divi-
sion, which could lead to precision errors. The following log from Slither shows
this issue:

Reentrancy in PerpsV2MarketState.deleteDelayedOrder(address):
External calls:
- legacyState.deleteDelayedOrder (account)
State variables written after the call(s):
- _delayedOrderMigrated[account] = true

4.2.3 Lesser-Known Projects

« DODOEX There were four merged pull requests in this repository. The number
makes sense as it is a lesser-known project. In one notable instance (which was pull
request number 1), a pull request was reviewed and accepted within approximately
7 hours and 45 minutes. Upon subsequent analysis with Slither, it was discovered
that this merge introduced several new issues. For instance, with this merge a new
function named sellTokenToEth in DODOEthProxy.sol file that introduces a reen-
trancy issue. The output of slither for this was

Reentrancy in DODOEthProxy.sellTokenToEth(address,uint256,uint256)
(contracts/DODOEthProxy.sol#123-137):

External calls:

- msg.sender.transfer(receiveEthAmount)

(contracts/DODOEthProxy.sol#134)

Event emitted after the call(s):

- ProxySellTokenToEth(msg.sender,baseTokenAddress,tokenAmount,receiveEthAmount)
(contracts/DODOEthProxy.sol#135)

Another issue introduced in this merge was the reentrancy issue in the same file
with the addition of another function named buyTokenWithEth. Slither logged
this message this time:

Reentrancy in DODOEthProxy.buyTokenWithEth(address,uint256,uint256)
(contracts/DODOEthProxy.sol#139-158):

External calls:

- msg.sender.transfer(refund) (contracts/DODOEthProxy.sol#154)
External calls sending eth:

- IWETH(_WETH_) .deposit{value: payEthAmount}()
(contracts/DODOEthProxy.sol#148)

- msg.sender.transfer(refund) (contracts/DODOEthProxy.sol#154)
Event emitted after the call(s):

- ProxyBuyTokenWithEth(msg.sender,baseTokenAddress,tokenAmount , payEthAmount)
(contracts/DODOEthProxy.sol#156)

11

The reentrancy issue described here is detected by these two detectors of slither:

- reentrancy-event: This detector detects reentrancies that allow manipulat-
ing the order or value of emitted events. This can potentially become prob-
lematic for components that rely on the value of events.

- reentrancy-unlimited-gas: This detector detects reentrancy issues in gen-
eral. It means that this reentrancy can lead to an over-expenditure of gas as
the code does not protect from reentrancy if the gas price changes.

The table below presents a summary of issues and their respective impact and con-
fidence resulting from running Slither before and after merging the aforemen-
tioned pull request. As can be seen, the number of issues has increased indicating
that the reviewing process was not able to identify those issues.

Level Before Merge | After Merge

High 4 8

Medium 7 14

Impact Low 7 12
Informational 25 28

Optimization 2 2

High 18 18

Confidence | Medium 27 46
Low 0 0

Table 2: Stats Before & After Merge in Pull Request #1 in DODOEX Project

Opium: There were three merged pull requests in this repository. In one of them
(which was pull request number 7), two new files named BalanceHelper.sol and
PayoutHelper.sol were added. Both of these files introduced new issues that Slither
was able to identify. For instance, in the PayoutHelper.sol file, an interface named
IDerivativeLogic was imported but its functions were not implemented yet. The
slither log for this issue was:

IDerivativelogic (contracts/Interface/IDerivativelogic.sol#7-49)
does not implement functions:
- IDerivativeLogic.allowThirdpartyExecution(bool)
(contracts/Interface/IDerivativelogic.sol#45)
- IDerivativeLogic.getAuthorAddress()
(contracts/Interface/IDerivativelogic.sol#28)
- IDerivativelLogic.getAuthorCommission()
(contracts/Interface/IDerivativelogic.sol#32)
- IDerivativelLogic.getExecutionPayout(LibDerivative.Derivative,uint256)
(contracts/Interface/IDerivativelogic.sol#24)
- IDerivativeLogic.getMargin(LibDerivative.Derivative)
(contracts/Interface/IDerivativelLogic.sol#17)
- IDerivativeLogic.isPool()

12

(contracts/Interface/IDerivativelogic.sol#41)

- IDerivativeLogic.thirdpartyExecutionAllowed (address)
(contracts/Interface/IDerivativeLogic.sol#37)

- IDerivativeLogic.validateInput(LibDerivative.Derivative)
(contracts/Interface/IDerivativelogic.sol#11)

The table below depicts the total number of introduced issues with the addition of
these two contracts.

Level BalanceHelper.sol | PayoutHelper.sol

High 0 0

Medium 0 0

Impact Low 1 1
Informational 30 8

Optimization 1 5
High 14 13

Confidence | Medium 18 1
Low 0 0

Table 3: Stats of Introduced Issues in Pull Request #7 in Opium Project

« Hegic: There were three merged pull requests in this repository. For instance, in
the pull request number 11, there were changes made in files HegicOptions.sol and
HegicERCPool.sol, which introduced compiler errors, but the pull request was still
approved. The time it took for this merge request to get approved was about 23
hours. The compile errors were the absence of the keyword override for two field
variables. The issue was resolved 6 days later in the pull request number 13.

4.2.4 Analysis

Our observations reveal that the current code review process for smart contracts mainly
focuses on understanding the function of the code rather than the identification of poten-
tial problems. A significant number of comments seem to interrogate the functionality
("What is this doing?”) rather than pointing out possible security threats ("This is inse-
cure”). This emphasis might inadvertently let some of the bugs go unnoticed during the
review.

Consolidating the data across the projects, we've identified the top three recurring
errors in the smart contracts:

« Reentrancy-events: This error is the most frequent and could be particularly dan-
gerous as it indicates potential reentrancy attacks, where an adversary could poten-
tially drain funds from a contract.

« Unchecked-transfer: The second most common error is transfers of funds are
made without verifying the validity of the recipient’s address. This oversight may
result in the permanent locking of funds.

13

« Arbitrary-send-eth: The third most common error. This indicates scenarios where
Ethereum can be sent to arbitrary addresses, which might lead to unintentional or
malicious fund transfers.

4.2.5 Solution

To address the common issues identified in smart contract code reviews, we propose an
enhanced code review methodology, that can identify the commonly observed errors. The
methodology comprises the following strategies:

« Focused Error Checklists: Maintain a checklist based on the top recurring er-
rors, ensuring that reviewers explicitly look for these vulnerabilities during the re-
view process.

« Educational Workshops: Organize periodic training sessions for developers and
reviewers to stay updated on the latest vulnerabilities and best practices in smart
contract development.

« Automated Tool Integration: Incorporate state-of-the-art tools like Slither into
the review process, ensuring automated checks are run before human reviews. This
can help in catching common mistakes even before the review begins.

5 Conclusion

Smart contracts, with their unique finance-related ecosystem, make the process of code
reviews even more crucial. Through this paper, we investigate the current code review
practices for 15 smart contracts on Ethereum. Our study reveals that while popular and
established smart contract projects tend to have rigorous review processes, the primary
focus of code review is not on finding bugs. As a result, this weakens the effectiveness
of code reviews in identifying and rectifying issues. The occurrence of oversight in code
review process applies to small and middle ground smart contracts as well, indicating that
this is an issue that happens commonly and needs more attention and work in order to
get fixed.

We use the Slither tool to analyze 15 smart contracts’ pull requests. Alarmingly, we
identified issues being introduced into the files without the reviewer’s notice. This over-
sight becomes especially concerning when we consider that blockchain is primarily used
for financial purposes.

For the continued growth and betterment of blockchain and smart contract develop-
ment, the code review process must focus on detecting bugs as well, not just the style of
the code. Our research identifies common bugs in smart contracts that reviewers over-
looked during the code review process. We propose an enhanced code review approach
that can help the entire community towards a more secure and robust smart contract en-
vironment.

14

References

(1]

2]

F. Khan, I. David, D. Varro, and S. McIntosh. Code cloning in smart contracts on the
ethereum platform: An extended replication study. IEEE Transactions on Software
Engineering, 49(4):2006-2019, April 2023.

Uniswap v3. https://github.com/Uniswap/v3-core.
Aave protocol. https://github.com/aave/aave-protocol.

Compound. https://github.com/compound-finance/
compound-protocol.

Makerdao dss. https://github.com/makerdao/dss.

Chainlink. https://github.com/smartcontractkit/chainlink.
Balancer. https://github.com/balancer/balancer-v2-monorepo.
Kyber network. https://github.com/KyberNetwork/smart-contracts.
Sushiswap. https://github.com/sushiswap/sushiswap.

Synthetix. https://github.com/Synthetixio/synthetix.

Yearn vault. https://github.com/yearn/yearn-vault.

Dodo. https://github.com/DODOEX/dodo-smart-contract.

Opium protocol. https://github.com/opiumprotocol/opium-contracts.
Keep network core. https://github.com/keep-network/keep-core.
Uma protocol. https://github.com/UMAprotocol/protocol.

Hegic. https://github.com/hegic/contracts-vil/.

Trail of Bits. Slither: A solidity source analyzer. https://github.com/crytic/
slither#detectors, 2021.

15

https://github.com/Uniswap/v3-core
https://github.com/aave/aave-protocol
https://github.com/compound-finance/compound-protocol
https://github.com/compound-finance/compound-protocol
https://github.com/makerdao/dss
https://github.com/smartcontractkit/chainlink
https://github.com/balancer/balancer-v2-monorepo
https://github.com/KyberNetwork/smart-contracts
https://github.com/sushiswap/sushiswap
https://github.com/Synthetixio/synthetix
https://github.com/yearn/yearn-vault
https://github.com/DODOEX/dodo-smart-contract
https://github.com/opiumprotocol/opium-contracts
https://github.com/keep-network/keep-core
https://github.com/UMAprotocol/protocol
https://github.com/hegic/contracts-v1/
https://github.com/crytic/slither#detectors
https://github.com/crytic/slither#detectors

	Introduction
	Code Review in Software Development
	Blockchain Technology and Smart Contracts
	Objectives of this Paper

	Motivation
	Code Review: Traditional Projects vs. Smart Contract Projects
	Consequences of Flawed Code Review: Traditional Projects vs. Smart Contracts

	Methodology
	Results
	Initial Investigation
	Tool Analysis
	Well Known Projects
	Middle Ground Projects
	Lesser-Known Projects
	Analysis
	Solution

	Conclusion

